Stability Problems for Generalized Additive Mappings and Euler-lagrange Type Mappings
نویسنده
چکیده
We introduce a generalized additivity of a mapping between Banach spaces and establish the Ulam type stability problem for a generalized additive mapping. The obtained results are somewhat different from the Ulam type stability result of Euler-Lagrange type mappings obtained by H. -M. Kim, K. -W. Jun and J. M. Rassias.
منابع مشابه
On the Generalized Ulam-Gavruta-Rassias Stability of Mixed-Type Linear and Euler-Lagrange-Rassias Functional Equations
In 1940, Ulam [1] proposed the famous Ulam stability problem of linear mappings. In 1941, Hyers [2] considered the case of approximately additive mappings f : E→ E′, where E and E′ are Banach spaces and f satisfies Hyers inequality ‖ f (x+ y)− f (x)− f (y)‖ ≤ ε for all x, y ∈ E. It was shown that the limit L(x) = limn→∞ 2−n f (2nx) exists for all x ∈ E and that L : E→ E′ is the unique additive ...
متن کاملApproximation of a generalized Euler-Lagrange type additive mapping on Lie $C^{ast}$-algebras
Using fixed point method, we prove some new stability results for Lie $(alpha,beta,gamma)$-derivations and Lie $C^{ast}$-algebra homomorphisms on Lie $C^{ast}$-algebras associated with the Euler-Lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...
متن کاملStability of a Generalized Euler-lagrange Type Additive Mapping and Homomorphisms in C∗-algebras Ii
The stability problem of functional equations was originated from a question of Ulam [66] concerning the stability of group homomorphisms: Let (G1, .) be a group and let (G2, ∗) be a metric group with the metric d(., .). Given ε > 0, does there exist a δ > 0, such that if a mapping h : G1 → G2 satisfies the inequality d(h(x1.x2), h(x1) ∗ h(x2)) < δ for all x1, x2 ∈ G1, then there exists a homom...
متن کاملJ. M. Rassias Product-sum Stability of an Euler-lagrange Functional Equation
In 1940 (and 1964) S. M. Ulam proposed the well-known Ulam stability problem. In 1941 D. H. Hyers solved the Hyers-Ulam problem for linear mappings. In 1992 and 2008, J. M. Rassias introduced the Euler-Lagrange quadratic mappings and the JMRassias “product-sum” stability, respectively. In this paper we introduce an Euler-Lagrange type quadratic functional equation and investigate the JMRassias ...
متن کاملOn Identities with Additive Mappings in Rings
begin{abstract} If $F,D:Rto R$ are additive mappings which satisfy $F(x^{n}y^{n})=x^nF(y^{n})+y^nD(x^{n})$ for all $x,yin R$. Then, $F$ is a generalized left derivation with associated Jordan left derivation $D$ on $R$. Similar type of result has been done for the other identity forcing to generalized derivation and at last an example has given in support of the theorems. end{abstract}
متن کامل